Title: A new DSM clustering algorithm for linkage groups identification

Author(s): Sharifi H.,Rahmani A.,Hoda Helmi B.,Nikanjam A.

نمایه شده در: Scopus Crossref

شناسه دیجیتال: DOI:10.1145/1830483.1830552
شناسه اختصاصی:
IRDOI
549-230-504-829
[برای لینک دادن به این صفحه]

Linkage learning has been considered as an influential factor in success of genetic and evolutionary algorithms for solving difficult optimization problems. In this paper, a deterministic model named Dependency Structure Matrix (DSM) is used for explicitly decomposing the problem. DSM captures pair-wise dependencies of the problem that must be turned into higher order interactions while solving complex problems. One way to obtain these higher order interactions (linkage groups) is clustering the DSM. A new DSM clustering algorithm is proposed in this paper which is able to identify all the linkage groups from a less accurate DSM leading to a reduction in the number of fitness calls required for identifying the linkage groups. The proposed technique is tested on several benchmark problems and it is shown that it can accurately identify all the linkage groups by 0(n1,7) fitness evaluations, where n is problem size.

اطلاعات استنادی

0

پروفایل‌های مرتبط

در صورتی که تاکنون مقاله‌ای در اسکوپوس یا وب آو ساینس داشته‌اید ابتدا پروفایل خود را در سای اکسپلور بیابید و ادعای پروفایل نمایید.

در سای اکسپلور فاقد پروفایل می باشم.