Title: An Ensemble of Deep Recurrent Neural Networks for Detecting IoT Cyber Attacks Using Network Traffic

Author(s): Saharkhizan M.,Azmoodeh A.,Dehghantanha A.,Choo K.-K.R.,Parizi R.M.

منبع: IEEE Internet of Things Journal : Volume 7, Issue 9, 2020 , Pages 8852-8859
نمایه شده در: Scopus Crossref

شناسه دیجیتال: DOI:10.1109/JIOT.2020.2996425
شناسه اختصاصی:
IRDOI
289-329-029-785
[برای لینک دادن به این صفحه]

© 2014 IEEE.Internet-of-Things (IoT) devices and systems will be increasingly targeted by cybercriminals (including nation state-sponsored or affiliated threat actors) as they become an integral part of our connected society and ecosystem. However, the challenges in securing these devices and systems are compounded by the scale and diversity of deployment, the fast-paced cyber threat landscape, and many other factors. Thus, in this article, we design an approach using advanced deep learning to detect cyber attacks against IoT systems. Specifically, our approach integrates a set of long short-term memory (LSTM) modules into an ensemble of detectors. These modules are then merged using a decision tree to arrive at an aggregated output at the final stage. We evaluate the effectiveness of our approach using a real-world data set of Modbus network traffic and obtain an accuracy rate of over 99% in the detection of cyber attacks against IoT devices.

اطلاعات استنادی

0

پروفایل‌های مرتبط

در صورتی که تاکنون مقاله‌ای در اسکوپوس یا وب آو ساینس داشته‌اید ابتدا پروفایل خود را در سای اکسپلور بیابید و ادعای پروفایل نمایید.

در سای اکسپلور فاقد پروفایل می باشم.